
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

NEW TECHNOLOGIES FOR ADVANCED
THREE-DIMENSIONAL OPTIMUM SHAPE DESIGN IN

AERONAUTICS

ALAIN DERVIEUXa,*, STÉPHANE LANTERIa, JEAN-MICHEL MALÉa,
NATHALIE MARCOa,1, NICOLE ROSTAING-SCHMIDTa,2 AND

BRUNO STOUFFLETb

a INRIA, Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
b Dassault A6iation, DGT-DEA, 78 Quai Dassault, F-92214 Saint Cloud Cedex, France

SUMMARY

The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive.
In order to obtain this result, the complexity of flow analysis codes has been constantly increasing,
involving more refined fluid models and sophisticated numerical methods. These codes can only run on
top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best
analysis codes in a shape optimization loop: most previous works in the optimum shape design field used
only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-
based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code.
However, emerging technologies are contributing to make such an ambitious project, of including a
state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there
are three important issues that this paper wishes to address: shape parametrization, automated differenti-
ation and parallel computing. Shape parametrization allows faster optimization by reducing the number of
design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be
obtained using automated differentiation. The automated approach is based on software manipulation
tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast
and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimiza-
tion software to run on increasingly larger geometries. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: Euler flows; optimum shape design; automated differentiation; shape parametrization; parallel comput-
ing

1. THE OPTIMIZATION PROBLEM IN HAND

The optimization problem in hand is the following:

* Correspondence to: INRIA, Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex,
France.
1 Projet SINUS.
2 Projet SAFIR.

Contract/grant sponsor: Program GENIE of The French Ministry of Research

CCC 0271–2091/99/100179–13$17.50
Copyright © 1999 John Wiley & Sons, Ltd.

A. DERVIEUX ET AL.180

Problem 1.1
Find g0 such that j(g0)5 j(g), Ög, under the constraint that some equation is satisfied, i.e.
C(W(g), g)=0.

To be more precise, interest is in finding an optimal shape (g0) of a three-dimensional
geometry under the constraint that the Euler equations for compressible flows (C(W(g), g)=0)
are satisfied, where W(g) is the flow in the domain V whose boundary contains g. The
appropriate Lagrangian L for Problem 1.1 is defined by:

L(g, W, P)=J(g, W)+�C(g, W), P�, (1.1)

where P denotes the generalized Lagrange multiplier associated with L. Derivations of (1.1)
with respect to g, W and P yield the following equations:

t9wC ·P= −9WJ, (1.2a)

C(W(g), g)=0, (1.2b)

9gJ+�9gC, P�=0. (1.2c)

Equation (1.2b) defines the constraint, (1.2a) is the adjoint state equation and (1.2c) is the
optimality condition for g0. As stated earlier, the direct state W solution of (1.2b) for a given
g is the steady Euler flow computed in the overall domain V. In order to take into account
possible complex geometries, such as complete aircrafts, the Euler equations are solved using
a mixed finite element/finite volume method designed to operate on fully unstructured meshes.

2. SOLVING FOR THE DIRECT STATE

2.1. Mathematical model and approximation methods

Let V¦R3 be the flow domain of interest and G be its boundary. The boundary G is
partitioned into a wall boundary Gw and a far-field boundary G�: G=Gw@G�. The shape g

is a subset of the total boundary G. Let n� denote the outward unit normal at any point of G.
The conservative law form of the equations describing three-dimensional Euler flows is given
by:

(W
(t

+9a ·Fa (W)=0, W= (r, rUb , E)T, 9a =� (
(x

,
(

(y
,
(

(z
�T

, (2.3)

where Fa (W) is the vector of convective fluxes whose components are given by:

Fx(W)=Ã
Ã

Ã

Á

Ä

ru
ru2+p

ru6
ruw

u(E+p)

Ã
Ã

Ã

Â

Å

, Fy(W)=Ã
Ã

Ã

Á

Ä

r6

ru6
r62+p

r6w
6(E+p)

Ã
Ã

Ã

Â

Å

, Fz(W)=Ã
Ã

Ã

Á

Ä

rw
ruw
r6w

rw2+p
w(E+p)

Ã
Ã

Ã

Â

Å

.

In the above expressions, r is the density, Ub = (u, 6, w)T is the velocity vector, E is the total
energy per unit of volume and p denotes the pressure that is obtained using the perfect gas
state equation p= (gp−1)(E−1

2 rUb 2), where gp is the ratio of specific heats (gp=1.4 for air).
The flow domain V is assumed to be a polyhedral bounded region of R3. Let Th be a standard
tetrahedrization of V. A vertex of the mesh is denoted by Si, and the set of its neighboring
vertices by N(i). At each vertex Si, a control volume Ci is constructed as the union of local

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 181

contributions obtained from the set of tetrahedra attached to Si ; for a given tetrahedron T, the
contribution to Ci is obtained by joining the barycenter, G, of T with the barycenters of the
faces of T attached to Si ; the latter barycenters are also connected to the midpoints of the
edges attached to Si. The boundary of Ci is denoted by (Ci, and the unit vector of the outward
normal to (Ci by 6� i. The union of all these control volumes constitutes a discretization of the
domain V.

The spatial discretization method adopted here uses a finite volume upwind formulation.
Briefly, for each control volume Ci associated to a vertex Si, one has to solve for n
one-dimensional Riemann problems at the control volume boundary, n being the number of
neighbors of Si. The spatial accuracy of the Riemann solver depends on the accuracy of the
interpolation of the physical quantities at the control volume boundary. For first-order
accuracy, the values of the physical quantities at the control volume boundary are taken equal
to the values in the control volume itself. In this case, the dependency domain of one edge is
reduced to the two points sharing this edge. Extension to second-order accuracy can be
performed via a ‘monotonic upwind scheme for conservative laws’ (MUSCL) technique of Van
Leer [1]. It consists of giving the Riemann solver a better interpolated value, taking into
account some gradient of the physical quantities. One can use a finite element gradient
(P1–Galerkin) computed on a particular tetrahedron, or an a6eraged nodal gradient, which is
taken as a particular average of the finite element gradients on the set of tetrahedra sharing a
given vertex. In the first case, one has to choose the candidate tetrahedron carefully, but the
dependency domain of one edge is of fixed size (six points in two space dimensions, eight points
in three space dimensions). In the second case, the dependency domain is of variable size,
depending on the local structure of the mesh. The technique employed for finding the right
element is known as upstream/downstream element and consists in choosing the tetrahedron
that has non-empty intersection with the line containing the current edge (see Figure 1).

Integrating Equation (2.3) over Ci yields:&&&
Ci

(W
(t

dx� +&&&
Ci

9a ·Fa (W) dx� =0. (2.4)

Integrating Equation (2.4) by parts leads to:&&&
Ci

(W
(t

dx� + %
j�N(i)

&
(Cij

Fa (W) ·n� i ds �1�

+
&
(CiSGw

Fa (W) ·n� i ds+
&
(CiSG�

Fa (W) ·n� i ds=0 �2�, (2.5)

where (Cij=(CiSCj. A first-order finite volume discretization of �1� goes as follows:

Figure 1. Definition of the upstream/downstream elements attached to one edge.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

A. DERVIEUX ET AL.182

�1�=Wi
n+1−Wi

n+Dt %
j�N(i)

FF(Wi
n, Wj

n, n� ij), (2.6)

where FF denotes a numerical flux function such that

FF(Wi, Wj, n� ij):
&
(Cij

Fa (W) ·n� i ds, n� ij=
&
(Cij

n� i ds. (2.7)

Upwinding is introduced here in the computation of Equation (2.7) by using the Van Leer
vector flux splitting (see [2] for more details), thus computing FF as:

FF(Wi, Wj, n� ij)=Fa +(Wi, n� ij)+Fa −(Wj, n� ij). (2.8)

Following the MUSCL technique [1], second-order accuracy is achieved in Equation (2.8) via
a piecewise linear interpolation of the states Wij and Wji at the interface between Ci and Cj :

W0 ij=W0 i+
1
2

(9a W0)i ·SiSj
�

, W0 ji=W0 j−
1
2

(9a W0)j ·SiSj
�

, (2.9)

where W0 = (r, Ub , p)T. An a6eraged nodal gradient (9a W0)i is obtained by averaging the P1–
Galerkin gradients computed on each tetrahedron of Ci. On the other hand, the upstream/
downstream element approach consists of computing the P1–Galerkin gradient on each of the
Tij and Tji candidate tetrahedra. Finally, the van Albada limitation procedure is introduced in
the interpolation (2.9) in order to preserve the monotony of the approximation (see [3] for
details). The second term �2� of Equation (2.5) includes the contributions of the boundary
conditions and is evaluated as follows:

– Wall boundary : when considering a non-viscous flow (solution of the Euler equations) the
condition Ub ·n� =0 is introduced, either directly or via a transpiration condition (see Section
4), in the computation of the corresponding boundary term of Equation (2.5).

– Inflow and outflow boundaries : at these boundaries, a plus–minus flux splitting is applied
between far-field uniform data and interior values.

A remark that is important to the present work is that the above discrete formulations for
internal and boundary convective flux computations as well as for the MUSCL interpolation
are differentiable. Indeed, the flux vector splitting, the interpolation, the limitation procedure
and the transpiration condition are differentiated with respect to the flow variable W and to
the co-ordinates of the geometry. This is detailed in Section 5.

2.2. Time integration

Assuming that W(x� , t) is constant over the control volume Ci (in other words, a mass
lumping technique is applied to the temporal term of Equation (2.5)), the following semi-dis-
crete fluid flow equations are obtained:

vol(Ci)
dWi

dt
+C(W)i=0, i=1, . . . , NV, (2.10)

where Wi=W(x� i, t) and

C(W)i= %
j�N(i)

FF(Wij, Wji, n� ij)+
&
(CiSG

Fa (W) ·n� i ds. (2.11)

Applying a first-order linearization to the flux C(W n+1) yields the Newton-like formulation
[4]:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 183�vol(Ci)
Dtn +J(W n)

�
(W n+1−W n)= −C(W n), (2.12)

where J(W n) denotes the associated Jacobian matrix. At each time step, the above linear
system is approximately solved using Jacobi relaxations.

3. MULTILEVEL ALGORITHMS FOR SHAPE OPTIMIZATION

Described here are the application of hierarchical basis concepts for building multilevel
algorithms for the optimization of complex three-dimensional shapes. The resulting multi-
level parametrization strategy allows the numerical treatment of shapes with a large number
of control parameters.

3.1. Multile6el parametrization for 3D shapes

Described here is a multilevel approach for the parametrization applied to the optimiza-
tion of an aircraft geometry in a three-dimensional Euler flow; the parametrized shape is
then a three-dimensional surface and flow calculations are performed on an unstructured
tetrahedral mesh. The construction of a multilevel parametrization [5] of this shape will rely
on a volume-agglomeration principle [6]. Given the dual discretization of the initial mesh
(the finer level), a coarser level is obtained by grouping or agglomerating neighboring
control volumes. This process is applied as many times as necessary to obtain the expected
grid level hierarchy. The surface is assimilated to a manifold S, which is supposed smooth
enough. The discretized surface Sh is nothing more than a triangulation of g, which is part
of the boundary G of the overall computational domain. A deformation of Sh is noted dSh.
A new configuration of Sh is computed as LPP*L*dSh where P is a canonical prolonga-
tion operator from a coarse level to a fine one; P* denotes a restriction operator that is
computed as the transpose of the prolongation operator P, P* takes a quantity defined on
a fine level and projects it on a coarser level; L and L* (the transpose of L) are
smoothing operators that are introduced in order to guaranty the V-regularity of the
discretized shape (where V is an appropriate functional space); refer to [6] for more details
on this construction.

The smoothing operator L is an average weighted by a scalar product of normals:

(Lx�)i= (1−u)x� i+u

%
j�N(i)@{i}

wijx� ij

%
j�N(i)@{i}

wij

, (3.13)

where wij are the weights defined by:

wij=max[A(i) ·A(j) ·(n� i ·n� j), 0], n� i=1 Öi, (3.14)

with A(i)=vol(Ci) and where N(i) represents the set of neighboring control volumes of Ci

and u is the smoothing parameter.

3.2. The multile6el algorithms: gradient and one-shot 6ariants

The multilevel gradient approach is introduced in [5] and relies on the following al-
gorithm:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

A. DERVIEUX ET AL.184

Begin Multilevel algorithm
For [each cycle nc]
Do

For [each level nl, 15nl5nl
max]

Do
Compute state and adjoint state
Compute gradient G(W, P)
Compute g

nl+(nl
max−1)nc=g

nl+(nl
max−1)nc−1−rLnl

Pnl
Pnl

*Lnl
*G

End
End

End Multilevel algorithm

where Lnl
and Pnl

are the smoothing operators defined in the previous section, according to
level nl, and where G(W, P) is a function of two variables W and P, which is equal to j %(g)
only if the conditions W=W(g) (state equation) and P=P(g) (adjoint state equation) are
verified. The parameter r is either fixed or obtained as the result of a one-dimensional search
algorithm (steepest descent version).

This algorithm results in a descent-type one when G(W, P) is exactly equal to j %(g) and it is
referred to as a multile6el gradient method [6]; conversely, when W and P are obtained by
applying only a few iterations of state equation and adjoint state equation iterative solution
(i.e. in the case of approximate state and adjoint state solutions), the G is not the gradient of
j, but aims to converge towards j %(g) when the whole loop is converging; this is referred to as
a one-shot multile6el method (according to [7]) for solving the optimality system of the
optimization problem.

4. OVERALL OPTIMIZATION LOOP

The application of a shape optimization loop involves the repeated rezoning of the mesh in
order to account for the modification of the shape. In the present work, inspired by the
approach used in [8], considered in a first phase is the option of representing the shape
modification by applying a transpiration-type boundary condition. In practice, this means that
a new configuration of the shape is defined with respect to the initial discretization of the
aircraft skin as a perturbation simulated by transpiration (see [9]), referred in the sequel as the
‘transpired perturbation’. Let g denote the perturbed shape, g0 being the initial configuration
of g ; g is obtained by deforming g0 along its normal n� g0. Briefly recalling the principles for
applying this kind of boundary condition in the context of Euler flows: if n� g is the normal
associated to the perturbed shape g, then applying a transpiration-type boundary condition on
the shape is equivalent to computing the appropriate part of the first integral of the term �2�
of Equation (2.5) as (with qi=Vb i · (n� i

g−n� i
g0)):&

(CiSg

Fa (W) ·n� i ds=qiWi+pi(0, nx
g0, ny

g0, nz
g0, qi)T. (4.15)

This approximation has proved to be accurate and robust enough for rather large perturba-
tions of the boundary. The overall method is essentially made of three loops (Figure 2). In the
general case, the external loop is a remeshing loop in which a new three-dimensional mesh is
obtained from a new configuration of the shape at each optimization iteration (in that case, the
transpired perturbation approach is no longer necessary); here, this external loop is not taken

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 185

Figure 2. Organization of the optimization loop.

into account. The middle loop is a gradient optimization loop in which the control variable is
the transpired perturbation; this loop involves the evaluation of the gradient of the cost
functional through an adjoint state calculation. The most internal loop is the one-dimensional
local research of the steepest descent parameter ropt.

5. SOLVING FOR THE ADJOINT STATE

5.1. Automatic differentiation

Several derivatives are needed to perform the above class of computation. Several of them
have been generated using an automatic differentiation tool, Odyssée3. This choice has some
(big) advantages, and some (small) drawbacks. The advantages are clear: the tool is powerful,
it saves a lot of time in human calculus, coding, error tracking; as it works by program
transformation, the source code of the function is used; as the tool is automatic, one can
expect it to produce reliable code. However, it may be necessary to adapt the source code in

3 Odyssée is developed in the SAFIR project, which is a joint project between the University of Nice-Sophia Antipolis,
INRIA Sophia Antipolis and CNRS.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

A. DERVIEUX ET AL.186

some way, or to change the function algorithm; the generated code will more than likely not
be optimal in terms of computer resource use.

5.2. A quick introduction to the Odyssée system

The automatic differentiation system Odyssée takes as input a Fortran 77 program and a set
of variables with respect to which the program must be differentiated. Odyssée computes the
differentiated code by transformation of the original one, and the output is a new Fortran 77
program. Odyssée system has been developed as a tool-kit of software components written in
a strongly typed functional language, CAML-LIGHT [10]. This language is particularly
well-suited for tree traversals and treatments.

From the user’s point of view, the Odyssée system can be used through a graphic interface
or a command language. Two modes of differentiation are available. In the forward mode,
either a directional derivative (the linear tangent map) or the Jacobian matrix can be
computed. In the reverse mode, the code computing the linear cotangent map is produced.
Odyssée can perform multiprocedural differentiation, in the sense that it can differentiate a
‘head’ subroutine and all the procedures called within this ‘head’ subroutine. As only the
forward mode has been used, for the purpose of computing the Jacobian matrix, focus will be
on this particular feature. When computing the Jacobian matrix, a subroutine call in the
original program leads to a call to the subroutine computing the derivatives with respect to the
inputs of the called subroutine, and a matrix product between this matrix and the Jacobian
matrix existing just before the call. These two rules gives the derivatives of the variables
modified by the call with respect to the variables of the main subroutine. The second item is
what makes computing the Jacobian code difficult; the data structure holding the ‘matrix’ may
as well be a fourth-order tensor, and the ‘matrix product’ is in fact a generalized tensor–tensor
product; Odyssée has to determine the appropriate number of nested loops, the appropriate
indices, and these portions of generated code are generally CPU consuming. The advantage of
this algorithm is code reusability; if the same procedure is called several times with different
formal parameters, there is no need to differentiate it more than once. Specific details on
Odyssée and on interprocedural differentiation may be found in [11] and an example of
application in [14].

5.3. Using Odyssée

The automatic differentiator Odyssée has been used extensively to compute the various
gradients needed in the different steps of the algorithm. Focus here will be on the differentia-
tion of C(g, W) to obtain 9WC. This matrix is then transposed ‘on the fly’ during the linear
system solution.

5.4. Original code transformations

From the above description (Section 2), it is clear that the computation of C(g, W) for the
entire mesh involves lots of scatter–gather operations (between points and edges, elements and
edges, etc.) These operations are implemented via array indirect-addressing. Thus, while the
domain dependency for one edge is rather small, it is evaluated only at run-time. A static
analysis of the original code shows that the domain dependency for one edge is virtually equal
to the whole domain. This confuses code manipulation tools and that is why it should be
expected that Odyssée generate maximal dependencies when computing the Jacobian matrix.
This problem is critical. Small typical meshes have at least 10000 points and 70000 edges in
three space dimensions and the local flux on one edge depends on very few (8) points. If

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 187

maximal dependencies are generated, a very large matrix—approximately 70000×10000=
700000000 entries—of which 700000000−70000×8=699440000 (99.92%) will be zero, each
entry consisting of a 5×5 matrix of 8 bytes floating-point numbers. This leads to a storage
requirement of approximately 130 Gigabytes, for the sole matrix, while the minimal storage
needed is only about 106 Megabytes for second-order accuracy, and only about 26 Megabytes
for first-order. This is vital for being able to run the code to address this problem, and it has
been done by carefully rewriting the original code computing C (g, W).

5.5. Eliminating spurious dependencies

The main idea is to separate computation and access to memory. The global sum of local
fluxes is still computed in one big loop on the mesh edges. However, the computation of the
local fluxes no longer involves direct accesses to the global structure; instead, a local structure
is filled before and passed to the local flux procedure. The local flux procedure only depends
on the local structure, which is of fixed small size. Local flux procedures are differentiated with
Odyssée, and a structure very similar to the rewritten algorithm is implemented to compute the
complete derivative. Resolving all indirections before the call to the function to be automati-
cally differentiated leads to little extra CPU cost (5%) because of the CALL overhead, but
ensures minimal memory occupation because dependencies are minimal.

5.6. Parallelization strategy

The parallelization strategy adopted in this study combines domain partitioning techniques
and a message-passing programming model. The underlying mesh is assumed to be partitioned
into several submeshes, each defining a subdomain. Basically, the same ‘old’ serial code is
going to be executed within every subdomain. When this parallelization strategy is applied to
the direct state calculation (i.e. the Euler flow solver), modifications occurred in the main time
stepping loop in order to take into account one or several assembly phases of the subdomain
results, depending on the order of the spatial approximation and on the nature of the time
advancing procedure (explicit/implicit). This approach enforces data locality, and therefore, is
suitable for all parallel hardware architectures. For the partitioning of the unstructured mesh,
two basic strategies can be considered. The first one is based on the introduction of an
overlapping region at subdomain interfaces and is well-suited to the mixed finite volume/ele-
ment formulation considered herein. Mesh partitions with overlapping have a main drawback:
they incur redundant floating-point operations. The second possible strategy is based on
non-overlapping mesh partitions and incur no redundant floating-point operations. While
updated nodal values are exchanged between the subdomains in overlapping mesh partitions,
partially gathered quantities are exchanged between subdomains in non-overlapping ones. It
has been the experience of the authors that both the programming effort and the performances
are maximized when considering non-overlapping mesh partitions [12]. In the present study,
one-tetrahedron wide overlapping mesh partitions will be considered for second-order-accurate
implicit computations.

Concerning the overall optimization loop, the above parallelization strategy is straightfor-
wardly extended to the adjoins state calculation (i.e. the construction of the adjoint state
Jacobian matrix and the linear solution of the resulting system using Jacobi relaxations).
Finally, the only part that remains sequential (i.e. duplicated as it is on each processor)
concerns the shape parametrization; we note that this part is concerned with a small data
subset (i.e. the set of control points) compared with the complete computational data set (i.e.
the tetrahedral mesh). In order to be able to do that, additional communication steps take

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

A. DERVIEUX ET AL.188

place at each optimization iteration in order to distribute the pressure values as well as the
displacement values associated to the set of control points.

6. OPTIMIZATION OF A FALCON JET GEOMETRY

The aim of this section is to demonstrate the application of the proposed shape optimization
strategy to an industrially relevant problem. The geometry under consideration is the one of a
Falcon aircraft. The three-dimensional computational mesh contains 45387 nodes and 255944
tetrahedra; the Falcon skin mesh consists of 2992 nodes (i.e. control points) and 5838 triangles.
The Odyssée tool has been applied to Van Leer flux routines in order to generate the code for
the first-order adjoint state Jacobian matrix. It is only a preliminary result, in the sense that
the memory needed to store the matrix is not too important in this case. The direct state (i.e.
the steady Euler flow computed for a free-stream Mach number equal to 0.85) has been
calculated using the second-order-accurate MUSCL formulation based on the a6eraged nodal
gradient approach. It is noted that the upstream/downstream element formulation will be used
in future works for computing a second-order-accurate adjoint state Jacobian matrix; this
means that the Odyssée tool will also be applied to the routines yielding the MUSCL
interpolation.

The multilevel parametrization of the skin mesh uses four levels that are visited using a full
V-cycle strategy. The second to fourth levels contain 873251 and 76 nodes (i.e. control points)
respectively. Firstly, the multile6el gradient method has been applied. For this purpose, the
direct state is solved using the implicit time advancing scheme (2.12), the steady state being
considered as obtained for a value of the absolute non-linear residual equal to 10−6 using a
maximum of 100 time steps (non-linear iterations); a variable CFL number strategy has been
used such that the pseudo-time step increases proportionally to the inverse of the non-linear
residual; for each time step, the tolerance for the approximate solution of system (2.12) has
been fixed to 10−2. Finally, the adjoint state is obtained using Jacobi relaxations on the
adjoint state system; as the accuracy of the solution is crucial to the obtaining of a correct
value of the functional gradient, a large number of relaxations are necessary in order to solve
this system at a tolerance that has been fixed to 10−8. A one-shot multile6el method has thus
be applied. In this case, a maximum of 15 time steps have been used for the direct state
solution (except for the first optimization iteration, for which this figure has been kept to 100).
For the adjoint state solution, a maximum of 100 Jacobi relaxations have been used (except for
the first optimization iteration, for which 2000 Jacobi relaxations have been used).

6.1. Numerical results

The challenge taken up was to find a geometry corresponding to a target pressure
distribution. Therefore, the cost functional has been defined as J(g, W)=	g (P(W)−Pt)2 ds

where Pt denotes the target pressure distribution. The latter has been obtained by solving for
the steady state solution using the initial geometry and then applying several iterations of the
multilevel smoothing procedure on the associated pressure distribution. Convergence histories
of the functional J(g, W) and of the l2-norm of the cost functional gradient are depicted in
Figure 3 for both optimization methods; these history curves are rather similar for both
methods. Figure 4 gives the non-linear convergence, i.e. the convergence of the Euler
calculations, across the optimization iterations for the one-shot multile6el method. The isolines
of the functional gradient on the Falcon surface at the end of the first optimization iteration
are visualized in Figure 5.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 189

Figure 3. Cost functional J(g, W) vs. optimization iteration (left); l2-norm of the cost functional gradient vs.
optimization iteration (right).

6.2. Performance results

The above calculations have been performed on a six-node SGI POWER CHALLENGE
ARRAY equipped with MIPS R8000/90 MHz processors. The communication steps are
performed using the MPI library even though the architecture is a shared memory MIMD one.
Performance results are gathered in Table I. All performance results reported herein are for
64-bit arithmetic. The total CPU times refer to the maximum of the individual processor
measures; the other measures refer to both minimum and maximum values of the direct state
and adjoint state solution times. The first striking out result is the much better performance of
the one-shot computation. Secondly, most of the CPU time for both optimization methods is
spent in the direct state solution. For the one-shot case, the total cost is not much larger that
completely solving 6–8 times the state equation.

Figure 4. Direct state non-linear convergence in the one-shot multilevel method.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

A. DERVIEUX ET AL.190

Figure 5. Isolines of the functional gradient on the Falcon surface (first optimization iteration).

7. CONCLUSIONS

An experiment, relying on the following ingredients, has been presented: (1) automated
differentiation has been applied to several modules of the code, (2) the direct state solution is
based on a parallel unstructured mesh Euler solver, and (3) use of a numerical mutilevel
parametrization for dealing with a large number of shape unknowns. It has been observed
that:

(1) State equation solving stays the dominant CPU concern; further efforts for faster solving
are a priority, e.g. by using multigrid acceleration techniques [13];

(2) Odyssée has proven to be rather efficient, reliable and easy to use. Two points are to be
noted. First, Odyssée-generated code is significantly slower than hand-coded derivatives, when
a6ailable (a factor 5 in CPU time). The second point is that when complexity increases, it is
usually extremely difficult or even impossible to hand-code exact derivatives. In these experi-
ments, the whole process of rewriting crucial code and differentiating it with Odyssée has
proven to be a faster alternative (a factor 30 in human time) with respect to hand-coding the
derivatives;

Table I. CPU times for 25 optimization iterations

Method Total optimization Direct state solution Adjoint state solution

Min Max Min Max
30 h, 50 min 26 h 30 h 2 h, 25 min 2 h, 30 minGradient

1 h, 50 min2 h, 30 min 40 min38 min1 h, 52 minOne-shot

Comparison between the multile6el gradient method and the one-shot multile6el method. Calculation on six
nodes of a SGI POWER CHALLENGE ARRAY.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

3D OPTIMUM SHAPE DESIGN 191

(3) Mutilevel parametrization is very easy to use; however, the main feature that should be
improved is the tuning of pseudo-gradient step lengths.

Future works will concentrate on more complex approximations and models for which a
matrix free adjoins state solver seems mandatory.

ACKNOWLEDGMENTS

This work has been partly supported by the French program GENIE of Ministry of Research.
The authors thank Dassault Aviation for providing the Falcon geometry.

REFERENCES

1. B. Van Leer, ‘Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov’s
method’, J. Comp. Phys., 32, 361–370 (1979).

2. B. Van Leer, ‘Flux-vector splitting for the Euler equations’, Lectures Notes in Phys., 170, 507–512 (1982).
3. L. Fezoui and A. Dervieux, ‘Finite element non-oscillatory schemes for compressible flows’, Proc. 8th France–

USSR–Italy Joint Symposium on Computational Mathematics and Applications, Pavie, Italy, 1993.
4. L. Fezoui and B. Stoufflet, ‘A class of implicit upwind schemes for Euler simulations with unstructured meshes’,

J. Comp. Phys., 84, 174–206 (1989).
5. F. Beux and A. Dervieux, ‘A hierarchical approach for shape optimization’, Eng. Comp., 11, 25–48 (1994).
6. N. Marco and A Dervieux, ‘Multilevel parametrization for aerodynamical optimization of 3D shapes’, Tech. Rep.

2949, INRIA, 1996.
7. S. Ta’asan, G. Kurovila and M. D. Salas, ‘Aerodynamic design and optimization in one-shot’, AIAA Paper

92-0025, AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, 1992.
8. W.P. Huffman, R.G. Melvin, D.P. Young, F.T. Johnson, J.E. Bussoletti, M.B. Bieterman and C.L. Hilmes,

‘Practical design and optimization in computational fluid dynamics’, AIAA Paper 93-3111, AIAA 24th Fluid
Dynamics Conference, Orlando FL, 1993.

9. G.D Mortchelewicz, ‘Résolution des equations d’Euler tridimensionnelles instationnaires en maillages non-struc-
turés’, La Recherche Aérospatiale, 6, 17–25 (1991).

10. X. Leroy, The CAML-LIGHT System, Documentation and User’s Manual, release 0.7, INRIA Rocquencourt, Le
Chesnay Cedex, France, 1995.

11. N. Rostaing, S. Dalmas and A. Galligo, ‘Automatic differentiation in Odyssée’, Tellus, 45A, 558–568 (1993).
12. S. Lanteri, ‘Parallel solutions of compressible flows using overlapping and non-overlapping mesh partitioning

strategies’, Parallel Comput., 22, 943–968 (1996).
13. M.H. Lallemand, H. Steve and A. Dervieux, ‘Unstructured multigriding by volume agglomeration: current status’,

Comput. Fluids, 21, 397–433 (1992).
14. B. Mohammadi, J.-M. Malé and N. Rostaing, ‘Automatic differentiation in direct and reverse modes: application

to optimum shapes design in fluid mechanics’, in M. Berz, C. Bischof, G. Corliss and A. Griewank (eds.),
Computational Differentiation: Techniques, Applications and Tools, SIAM, 1996.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 179–191 (1999)

